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Abstract

The paper examines the super-replication of contingent claims in a discrete time 
financial market with proportional transaction costs. The sole assumption on stock price 
dynamics is that the returns are bounded. The class of path-dependent European options 
with nonnegative convex payoff functions is considered. It is proved that the pricing of 
this type of options can be studied through the pricing of a suitable binomial model. 
As a consequence, it is shown that the pricing algorithm, which is essentially a dynamic 
programming procedure on a tree, can be used when the set of possible scenarios is 
not finite.
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1. Introduction

This article examines the super-replication of European options in a discrete 
time market model with transaction costs and volatility uncertainty. Such 
a problem naturally arises in various applications when European options are 
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priced. It is therefore not surprising that this issue has been studied fairly widely. 
The pricing and hedging of contingent claims under proportional transaction 
costs in the classical case has also been studied in a number of papers (Stettner 
1997, Kociński 2004, Roux, Tokarz & Zastawniak 2008). Option pricing is closely 
related to the arbitrage under transaction costs studied in (Guasoni, Lépinette & 
Rásonyi 2012, Guasoni, Lépinette & Schachermayer 2008, Jouini & Kallal 1995, 
Schachermayer 2003).

A classical probabilistic model of a financial market consists of a measurable 
space ,FΩ^ h and a probability measure P determining the distribution of stock 
prices. In contrast, for this paper we studied a distribution not assumed to be 
(completely) known a priori. Our sole assumption on the stock price dynamic 
is that the absolute value of the log-returns is bounded from both below and 
above. The problem of super-replication in such a discrete-time model, with more 
general nonlinear transaction costs, is studied in (Bank, Dolinsky & Gökay 2016). 
The result, including the special case of a convex payoff profile, seems to be 
nontrivial when applied to the real market from point of view of the calculations. 
A. Roux, K. Tokarz and T. Zastawniak (2008) developed a pricing and hedging 
algorithm in the discrete setting under proportional transaction costs, which can be 
rapidly implemented on a computer, but does not allow for models with uncertain 
volatilities.

The aim of this paper is to show that pricing of convex European options 
can be reduced to studying the pricing of a suitable binomial model following 
the arguments of P. Bank, Y. Dolinsky and S. Gökay (2016) as well as A. Roux, 
K. Tokarz and T. Zastawniak (2008). The method presented leads to a feasible 
procedure which can be applied to options with convex payoffs in an uncertain 
volatility model with arbitrary proportional transaction costs. 

2. Description of the Model

Let us consider a discrete time market model with a time horizon N N!  with 
a riskless savings account Bn = 1, n = 0, …, N and a risky stock Sn > 0, n = 0, …, N.  
Let

 : lnX S
S

n
n

n

1–
= c m (1)

be the log-return for period n = 1, …, N such that

 ,   , ,X n N1n f# #σ σ =  (2)

for some constants .0 <3# #σ σ  Hence
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Let

 : ,  , :    ,    , ,Rx x x n N1Ω  , N
N

n1 f f! # #ω σ σΩ = = = =σ σ ^ h% / (4)

be the path space with the canonical process

 : ,  ,forX x x x    Ωk k N1 f !ω ω= =^ ^h h  (5)

and the canonical filtration

 : , , ,   , , .X X n N0Fn n1 f fσ= =^ h  (6)

For every , ,n N0 f=  the cost of buying one share of the stock at time n is 
,S 1n l+^ h  where [ , )0 3!l  and the amount received for selling one share at time n 

is S 1 –n m^ h with [ , )0 1!m . A trading strategy is a pair ,η θ^ h of predictable 
processes ,n nη θ  representing positions in cash and stock respectively, at n = 0, …, N.  
The time n liquidation value ϑn of a portfolio ,α β^ h of cash and stock is defined as

 , .S S1 1– –n n n
–ϑ α β α β µ β λ= + ++^ ^ ^h h h  (7)

Definition 1. A pair ,η θ^ h of predictable processes ,n nη θ , can be called a self- 
-financing strategy, if

 , 0– –n n n n n1 1 $ϑ η η θ θ+ +^ h  (8)

for each n = 0, …, N, with .00θ =

The class of self-financing strategies starting with initial capital shall be 
denoted by .by0 0η ηΦ^ h

Definition 2. The super-replication price of a European option :F R RN 1"+
+

+ 
is defined as
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The aim here is to determine the minimal initial capital which allows one,  
by using self-financing strategy, to end up holding a solvent portfolio 

, ,F S–N Nη ω ω θ ω^ ^ ^ ^ ^h hh hh  by delivering the payoff ( )F S  at time N. It should be 
emphasised that super-replication prices are not defined in an almost sure sense, 
as in the classical approach.
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3. The Main Result

We consider the special case of a convex payoff profile and show that the super-
replication price coincides with the one computed in the binomial model where the 
volatility always takes its maximal values. This result allows for the investigation 
to be continued in the finite path space and, consequently, for an algorithmic 
approach to the optimal super-replication of European options considered in 
(Roux, Tokarz & Zastawniak 2008) to be used.

Theorem 3. Suppose that the payoff function :F R RN 1"+
+

+  is convex. 
The super-replication price of any European option with payoff F is then given by

 F F,π π=σ σ ^ ^h h
where F F,π π= σ σ^ ^h h denotes the super-replication price of F S^ h in the binomial 
model with volatility σ and transaction costs l, m.

A similar result for markets with friction is shown in (Bank, Dolinsky & 
Gökay 2016). Note that in (Bank, Dolinsky & Gökay 2016), the mark-to-market 
value rather than the liquidation value is considered. Moreover, this approach is 
based on a different definition of the self-financing strategy. 

Proof. Note that .F F, $π πσ σ ^ ^h h  It suffices to show that for any e > 0 there 
exists a self-financial strategy ,η θ^ h which super-replicates F S^ h in every 
scenario !ω Ω with initial position ,F 0ε π+^ ^ h h. Consider the binomial model 
with volatility σ. Let ,1 1– NΩ=" ,  be the path space with canonical process 

:X xn nω =^ h  for , ,x xN1 f !ω Ω= ^ h  and the stock price evolution S s0=0  and 
, , , .expS S n NX 1n n 1– fσ= =n^ h  Clearly, the canonical filtration 

 : , , ,   , ,X X n N0F n n1 f fσ= =^ h  (10)

coincides with the one generated by .S S , ,n n N0= f=^ h  By the definition of Fπ^ h 
there is nF , ,n N0 f=^ h -predictable process ,η θ^ h such that with .00θ =  We therefore 
have

 ,F 0– –0 1 0 1 $ϑ ε π η θ θ+^ ^ h h  (11)

 , ,    , ,n N0 1 1– – –n n n n n1 1 f$ϑ η η θ θ =+ +^ h  (12)

 ,F S 0–N N $ϑ η θN^ ^ h h  (13)

everywhere on Ω. In view of inequalities (2) for any !ω Ω and n = 1, …, N there 
are unique weights , withw w w w0 1n n n n

1 1 1 1– –$ω ω ω ω+ =+ +^ ^ ^ ^^ ^ ^ ^h h h hh h h h  such that
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Observe that for weights
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for n = 1, …, N and
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By using (3), (14), (17) and the adaptedness of S we get the following representation:
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for any n = 1, …, N, .!ω Ω  Now consider the pair ,η θ^ h of predictable processes 
, :n nη θ
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First we prove that the strategy ,η θ^ h is self-financing. In view of (11), (7), (16), 
(19) and (20) we have
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Observe that
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for any n = 1, …, N, .!ω Ω  Since θ is predictable with respect to the filtration 
F , ,n n N0 f=^ h  and S is F , ,n n N0 f=^ h -adapted we have

 
, , ,1 1f( )w S w S  

,
N n n n n n

n n

1
1 1

1

1

Ω – n

n
ω θ ω ω ω θ ω

ω ω

= =
! !ω

ω

ω

ω
+ +

+

/ / n

n

Sθ=

^ ^ ^

^ ^

^ ^h h h

h h

h h
" ,  (23)

for any n = 1, …, N, !ω Ω and
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for any n = 2, …, N – 1, !ω Ω. Now, using (12) and (7) we obtain 
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for any n = 1, …, N – 1, !ω Ω, which in conjunction with (22), (23), (24) and the 
convexity of the positive and the negative part entails the inequality

 ,0 – –n n n n n1 1#ϑ η ω η ω θ ω θ ω+ +^ ^ ^ ^ ^h h h hh (26)

for any n = 1, …, N – 1, !ω Ω. The super-replication condition

 ,F S 0–N N N $ϑ η ω θ ω^ ^ ^ ^h h hh  (27)

for !ω Ω remains to be proved. By definition of ϑn and (13) we have

(25)
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Note that
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due to the convexity of :F R RN 1"+
+

+ and (18). Similarly,
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This shows that the self-financing strategy ,η θ^ h super-replicates F S^ h with 
F0η ε π= + ^ h, which completes the proof.

4. Consequences and Further Generalisations

In setup used for this paper, all possible stock price evolutions which respect 
the specified volatility bounds are uncountable, but in view of Theorem 3, from 
Theorem 4.2 in (Roux, Tokarz & Zastawniak 2008), corollary 4 is obtained.

Corollary 4. The super-replication price of a European option with convex 
payoff F S^ h is given by

 ( ) ,max maxF F S Z S1–E, P
, S x

x
0 0

P RP
π λ= = +

! !
σ σ t
^ ^ ^

^
h hh

h

where P denotes the set of pairs , SP t^ h such that P is probability measure on Ω 
and St is a martingale under P satisfying
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 S S S1 1–n n n# #µ λ+^ ^h hV
for any n = 0, …, N, Z0 is the polyhedral proper convex function constructed as 
follows: 

– we put 
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– for any n = 0, …, N – 1 we take
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This method makes it possible to price the European option algorithmically, 
as was studied in (Roux, Tokarz & Zastawniak 2008). 

This paper has examined proportional transaction costs, the results of which 
can be extended to convex transaction costs. Further extension will consider multi- 
-asset cases and generalize the results in this direction.
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Superreplikacja opcji europejskich o wypukłej funkcji wypłaty  
przy proporcjonalnych kosztach transakcji 
(Streszczenie)

W artykule przedstawiono superreplikację instrumentów pochodnych na rynku finan-
sowym z czasem dyskretnym z proporcjonalnymi kosztami transakcji. O dynamice cen 
akcji zakładano wyłącznie, że stopy zwrotu są ograniczone. Rozpatrywano klasę euro-
pejskich opcji zależnych od trajektorii, o nieujemnych, wypukłych funkcjach wypłaty. 
Udowodniono, że problem wyceny tego typu opcji można zredukować do wyceny w odpo-
wiednim modelu dwumianowym. Pokazano zatem, że algorytm wyceny, będący w istocie  
algorytmem programowania dynamicznego na drzewie, może zostać wykorzystany, 
w przypadku gdy przestrzeń możliwych scenariuszy nie jest skończona.

Słowa kluczowe: superreplikacja, koszty transakcji, niepewność modelu, opcje euro- 
pejskie.


