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Abstract

The article examines problems that can be encountered in the monitoring and evalu-
ation of quality control processes. Two types of product/process qualification are distin-
guished in quality control procedures: quality control/inspection by attributes and quality 
control/inspection by variables. This division also results in the division of processes. 
Generally, there are two types of stochastic processes: binary processes and continuous/
numerical processes. The first brings the case being described into a zero-one system. 
The second analyses processes with continuous random variables.

This article addresses the following issues: evaluating multidimensional stochastic 
processes, process binarisation methods, measuring product/process quality and applying 
statistical procedures to process monitoring. A comprehensive numerical example illus-
trating these problems is also provided.

Keywords: binary processes, quality management, process control, evaluation of multidi-
mensional stochastic processes.
JEL Classification: C12, C19, C32, C39, C44, L15.

1. Introduction

The paper outlines problems that arise in monitoring quality management. 
The following issues are addressed: multidimensional binary and numerical eval-
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uation of process properties, process binarisation methods, product/process quality 
measures, the possibility of using statistical methods, particularly cumulative sum 
control charts, for process monitoring. 

An extensive numerical example is used to better illustrate these issues. 
In managing quality, evaluating products’ technical and performance features 

is essential, and extends to the evaluation of the production processes in which the 
products are manufactured. Sometimes the process is defined briefly as the devel-
opment of a specific phenomenon in time (cf. Iwasiewicz 2011, p. 215). The reason 
for this definition is that both the state of the observed object and the relationship 
between phenomena can be treated as a phenomenon.

In the subject literature (Montgomery 2009) and in international standards 
(ISO 2859-1:1999, ISO 3951-1:2005) two methods for evaluating features are 
distinguished: quality control/inspection by attributes and quality control/inspec-
tion by variables.

It seems reasonable to use the term “binary evaluation of product features” and, 
in the case of process evaluation, “evaluation of binary processes” (cf. Iwasiewicz 
2011, p. 213 and further). The character of the process studied may be due to 
the dichotomous state of the phenomenon being studied or to the binarisation of 
the multistate description thereof. The zero-one coding of a process may also be 
appropriate when information acquisition procedures are limited. 

The situation of the numerical evaluation of product or process features is 
somewhat different. Here the random (diagnostic) variable is most often a contin-
uous variable and its value is measured on a strong (ratio or interval) measurement 
scale. The technological process evaluated with regard to a continuous diagnostic 
variable can be termed either a continuous process or a quasi-continuous process. 
Process monitoring usually involves tracking a particular phenomenon over time, 
and consists of two stages (cf. Iwasiewicz 2005–2006, p. 104). The first retrieves 
and pre-processes information about the given objects, phenomena or relationships 
between them. In the second stage, data obtained in the first stage are analysed.

2. Measuring Process Information

The first stage yields one-dimensional or multi-dimensional time series:
 (t; xt ), t = 1, 2, 3, …, (1)

where t is an interval or point on the time axis, while xt is the instance of a suitable 
random vector describing the state of the given object, phenomenon or, briefly, the 
process. 

If the process analysis is multidimensional and the evaluation is due to k partial 
diagnostic variables, then the resulting column vector Xt will assume the form:
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In the case of binary process analysis, the values of vector (2) are determined 
according to the following principle:

 .x 0
1

process state meets requirements
process state does not meet requirements

if
ifjt = '  (3)

The set of values of each diagnostic variable Xj is a two-element set ; ,X 0 1j
0 = " ,  

out of which two subsets are distinguished: a subset of the desired values X 0j =+ " , 
and a subset of undesirable values .X 1j

– = " ,
If the process represented by continuous diagnostic variables is analysed, then 

the vector (2) values are the real numbers resulting from the measurement on 
a strong scale. Then meeting or not meeting the specific process requirements 
depends on other factors such as the type of diagnostic variable1 (quality nomi-
nant, quality stimulant, quality destimulant2) and the associated tolerance interval 
structure (two-sided, one-sided). Quality requirements are formulated in the 
form of tolerance range Xj+, which is equivalent to the set of allowable values .X j

+  
The tolerance range form depends on the diagnostic variable type and on the tech-
nological and/or substantive requirements for the process under analysis. If j-th 
diagnostic variable is treated as the quality nominant, then the tolerance range is 
limited on both sides by xj.d and xj.g and assumes the form:
 Xj+= [xj.d ; xj.g ]. (4) 

In range (4), the optimal (nominal, most desirable) value is .x X.j N jd +
If the diagnostic variable being studied is a quality destimulant, then the toler-

ance range is limited on the right side by xj.g and assumes the form:
 Xj+ = [a; xj.g ]; (5)

if, however, the diagnostic variable is a quality stimulant, then the tolerance range 
is limited on the left side by xj.d and then assumes the form:
 Xj+ = [xj.d ; b]. (6)

1 It is typically assumed that the distribution of such a variable is approximated by the normal 
distribution with parameters μ and σ, which are the expected value and standard deviation of var-
iable Xj (Xj ~ N(μ; σ)),

2 See more (Major 2015c, p. 71–76), see also: (Hellwig 1968, p. 48; Borys 1978, p. 118; 1980, 
p. 31–33; Iwasiewicz 2005, p. 36–41; Bąk 1999, p. 34-37; Taksonomiczna analiza… 2000, p. 76–82).
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Parameters xj.d and xj.g should be interpreted as the j-th variable’s acceptable 
minimum and maximum. In turn, a and b are not constraints in terms of quality 
requirements. They depend on the formal properties of the adopted measure-
ment scale, or on the technical properties of the measurement instrumentation 
used. If, for example, tthe percentage concentration of a particular ingredient in 
a product is being evaluated, then a = 0%, b = 100%.

3. Integration of Partial Process Evaluations

Once the column vector or type (2) vectors have been obtained, the partial 
process evaluations must be integrated. This can be done in two ways. The first 
is to analyse the process state for each j-th diagnostic variable (j = 1, …, k) sepa-
rately, and to statistically integrate the individual results at the final analysis 
stage of the process. The second way aims to integrate the results by developing 
synthetic (integrated) process characteristics already at the partial information 
collection stage. The overall evaluation of the process is then based on a statistical 
analysis of the synthetic (integrated) process evaluations.

One way to integrate data at the partial information collection stage is to 
compare the subsequent column vectors (2) with the reference column vector X0 
in the general form: 

 X
...

...
.

x

x

x

.

.

.

j

k

0

1 0

0

0

=

R

T

S
S
S
S
S
SS

V

X

W
W
W
W
W
WW

 (7)

The pattern vector values depend on the process characteristics. In the case of 
a binary process, in accordance with rule (3), all coordinates of vector X0 are equal 
to the values of subset X 0j =+ " , and amount to xj.0 = 0 (j = 1, …, k). The process 
state vectors (2) can be compared with the pattern vector by using statistics Dt, 
with values calculated from the formula (Iwasiewicz 2011, p. 217):

 d x x x–. . .t j t j
j

k

j t
j

k

0
1 1

= =
= =
^ h/ /  (t = 1, 2, 3, …). (8)

Statistics Dt can assume values from set D0 ={0, 1, 2, …, k} denoting the 
number of incompatibilities between subsequent process state vectors Xt and 
pattern vector X0. Probability distribution set on individual values of these statis-
tics allows for further evaluation of the process state3. 

3 The most common distributions used in practice include binomial and Poisson distributions.
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Using an algorithm for dealing with continuous processes is somewhat 
different, and can be handled in two ways. The first converts the continuous vari-
able to the binary variable. 

Then the new partial variable X jl will take values according to the rule:

 ,x
x X
x X
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if
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jt j
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l *  (9) 

where Xj+ means the tolerance range of the j-th continuous diagnostic variable.
The second solution is to define the values of the pattern vector. How the 

pattern vector’s values are defined, with its coordinates confronted with process 
state vectors Xt, is slightly different in continuous processes. Pattern vector values 
x0.j (j = 1, …, k) are created according to the following rule4: 
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where:
xj.N – the optimum (nominal, most desirable) value of the variable being the 

quality nominant,
xj.min (xj.max ) – the theoretical minimum (maximum) value of the j-th diagnostic 

variable. When the tolerance range is defined as in (5) or (6), then xj.min = a, and 
xj.max = b.

The reference pattern design becomes simpler when the diagnostic variables 
describing the products being tested are subjected to stimulation (a transformation 
that brings the diagnostic variables under analysis down to quality stimulants). 
Then the j-th coordinate of the reference pattern will be determined as follows:
 x0.j = xj.max. (11)

Another significant simplification may consist in subjecting the diagnostic 
variables to a normalisation process, especially of a type that guarantees a uniform 
order of magnitude in the range [0, 1]. Such a condition is fulfilled by zero unita-
risation, for example. As a result, the values of the variables are transformed to the 
range [0, 1]. The column pattern vector is then a vector k values of one in the form: 
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4 The reference pattern can be real object (one of ones being evaluated) or a theoretical (virtual) 
object. See more (Major 2015c, p. 92–93).
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A separate issue is how to compare the process state vectors with the pattern 
vector. A number of methods using various distance measures have been reported 
(eg. Major 2015c, p. 85–95, 103–106; Walesiak 2002, p. 35, 54–59). The most 
popular, and simplest method, uses Euclid’s metric. If the reference pattern is 
a vector of ones, the distance between it and the process state vectors is calculated 
according to this formula (Major 2015c, p. 104):

 ,d w q 1–.t j jt
j

k

0
2

1
=

=
^ h/  (13) 

where:
dt.0 – the distance between the state of the process in time t, and the pattern 

vector, 
qjt – the normalised value of the j-th variable (qjt d [0, 1]),

wj – the weight factor assigned to the j-th diagnostic variable5 .w 1j
j

k

1
=

=
f p/

Assuming that the sum of the weights assigned to the diagnostic variables is 1, 
the set of values generated by metric (13) will be in the range [0, 1]. The closer the 
metric value is to zero, the more desirable will be the final state of the process, and 
the further away from the ideal the closer the value is to 1.

4. Process Evaluation

As noted earlier, process evaluation depends on the process type and the 
resulting category of the variable that aggregates partial evaluations. In the rele-
vant literature (Iwasiewicz 2011, p. 218) there are usually two evaluation categories 
identified:

 – by attributes,
 – multi-state (multi-level).

In the first case, only two states of the process (see Iwasiewicz 1985, p. 71) are 
recognised:

 – in control (running correctly, as required),
 – out of control (running incorrectly, not as required).

In the latter case, the number of process states depends on the set of values of 
the partial evaluation aggregating variable. In binary processes, such states can be 
maximum k (k – number of variables), but in continuous processes theoretically 
there are infinitely many.

5 Assuming equal validity of the variables, the weight factor can be omitted or assumed to be 1/k.
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Procedures used to evaluate (or monitor) processes most often generate evalu-
ations by attributes6. Sometimes multi-stage evaluations are transformed to eval-
uations by attributes (the so-called dichotomisation of diagnostic variables). This 
is in line with the intuitive approach to the problem, whereby a quality manager is 
usually interested in whether the process is out of control, rather than defining the 
extent of defectiveness. 

A. Iwasiewicz has proposed the following zero-one synthetic variable Yt , which 
assumes values according to the rule (Iwasiewicz 2011, p. 218):

 ,X X
X X
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0
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where:
Xt j X0 denotes the instance of conformity between vectors Xt and X0,
Xt j X0 denotes the instance of nonconformity between vectors Xt and X0,
j( j) – the relationship of conformity (or nonconformity).
Like partial variables, the synthetic variable Yt has a two-element set of values 

Y 0 = {0;1}, which includes two single-element subsets: a subset of desired values 
Y + = {0} and a subset of undesired values Y – = {1}.

It is important how the relationship of conformity (j) between the process 
state vector and the pattern vector is defined. The basic parameters affecting the 
type of relationship include the number of diagnostic variables tested (k) and the 
maximum allowable number of nonconformities (r: r ≤ k). The most rigorous class 
of relationships is the relation (k; 0). To qualify a tested stochastic as in control, 
its all k partial diagnostic variables must be conforming. This is the case when 
all partial diagnostic variables describe relatively relevant critical features of the 
object (be it a product or something else)7. If the variable or partial variables 
describe irrelevant features of the object8, it is then acceptable to use a relationship 
of the (k; 1 ≤ r ≤ k) class. In this case, however, it should be clarified whether 
the relation applies to all variables or only to its particular subset. For example, 
j (k; 12 ) means that the conformity relationship does not necessarily apply to the 
diagnostic variable 2, and j (k; 1) means that one nonconformity is acceptable with 
regard to any j-th variable (j = 1, …, k).

6 An obvious example is the control chart that enables signalling the process’ correctness or 
defectiveness with a certain probability of error.

7 The notion of critical product feature or relevant product feature is related to the nature of 
the product’s defect. A critical defect may lead to hazardous conditions when the product is used, 
or significantly reduces a product’s ability to perform certain functions. A relevant defect disables 
or reduces the product’s usability. See more (Słownik jakości 1980, p. 33; cf. Słownik jakości 1968). 

8 The notion of irrelevant feature is related to the definition of irrelevant defect – that is, such 
which has little effect on the product’s performance and which does not diminish its usability for its 
intended purpose (after Słownik jakości 1980, p. 33).
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Suppose now that a continuous stochastic process is evaluated. The conformity 
between the process state vector and the pattern vector (11) is evaluated on the 
basis of metric (12). The chronological partial results of the process state may then 
be aggregated according to the formula:
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where:
dt.0 is the synthetic distance between the process state vector at time t and the 

pattern vector and 
δt.0 (0 ≤ δt.0 ≤ 1) is the maximum allowable (acceptable) synthetic distance from 

the reference pattern. 
The parameter δt.0 should depend on the tolerance limits of the diagnostic vari-

ables under analysis9. Since it has been assumed that the diagnostic variables were 
normalised by the zero unitarisastion method, their values, as well as the tolerance 
range limits, are in the range [0, 1]. Each normalised j-th diagnostic variable is 
then a quality stimulant with a tolerance range for the form:
 Qj+= [qj.d ; 1], (16) 

where:
qj.d – the normalised lower limit of the j-th diagnostic variable’s tolerance range. 
From here, the maximum synthetic distance from the reference pattern can be 

calculated:

 .w q 1–.t j jd
j

k

0
2

1
δ =

=
^ h/  (17)

The weakness of this solution is that it does not allow one to differentiate 
between conformity classes, as is the case with binary processes. Let us note that 
by using the aggregation of type (15), we take into account all k partial varia-
bles. One possible solution to mitigate the conformity relationship in this case 
may be the appropriate selection of the weights of partial variables and of param-
eter δ. As is known from the literature: (Willmott & Grimshaw 1969; Wishart 
1969; Kolonko 1980, p. 41; Borys 1984, p. 319; Abrahamowicz 1985, p. 188–243; 
Grabiński, Wydymus and Zeliaś 1989, p. 25–27; Bąk 1999, p. 44–46; Taksono-
miczna analiza… 2000, p. 45–50; Major 2015, p. 76–80), the appropriate selection 
of the variables’ weights is not an obvious process and requires serious knowledge 

9 Parameter δ can also be valued arbitrarily on the basis of the technical and substantive con-
ditions of the the process under study. In the simplest situation, the δ value can be assumed as 
0.5, which means that, at most, half of the maximum distance between the current vector and the 
pattern vector is acceptable.
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of the subject matter. However, this problem can be avoided by prior dichotomising 
the process at the information acquisition stage.

5. Measures of Product/Process Quality

The state of a monitored process is usually indicated by the average level of 
the observed phenomenon and its variability. For binary evaluations of processes, 
both of these characteristics are tracked simultaneously by observing parameter p. 
This is because when random variable has a zero-one distribution, the expected 
value and variance are respectively p and q = p(1 – p). Parameter p is defined as 
the probability of a random event, the occurrence of which will lead the monitored 
process to an undesirable state. If a process is evaluated with regard to a single 
j-th diagnostic variable, i.e. when the partial level of the process is evaluated, then:
 ,p X P X X P X X P X 1j j j j j j

–d z= = = =+^ ^ ^ ^h h h h  (j = 1, …, k). (18)

If, on the other hand, a process state is evaluated with regard to synthetic 
(aggregate) variable Y in the form of (14), then, similarly: 
 .p Y P Y Y P Y Y P Y 1–d z= = = =+^ ^ ^ ^h h h h  (19)

In the relevant literature (Iwasiewicz 1999, p. 136–140; 2005, p. 59–87), charac-
teristic (18) is called the partial defect (defectiveness), while statistic (19) is called 
the aggregate defect of the product or process. These inverse measures – inverse 
because from the perspective of process quality, the smallest possible values of 
this parameter are desirable – belong to one of the two basic performance quality 
measures10. 

Measures (18) and (19) can be replaced by other non-inverse measures – partial 
correctness q(Xj ) and aggregate correctness q(Y). Then:

 ,q X P X X P X P XX 0j j j j jj
–d z= = = =+^ ^ ^ ^h h h h  (j = 1, …, k), (20)

 .q Y P Y Y P Y Y P Y 0–d z= = = =+^ ^ ^ ^h h h h  (21)

There are the following relationships between these measures:
 p(Xj ) + q(Xj ) = 1, (22)

 p(Y) + q(Y) = 1. (23)

Aggregate defectiveness and correctness depend on the number of diagnostic vari-
ables and on the conformity relationship class. There are the following depend-
ences:

10 The other quality measure is the number of defects in the product unit.
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 p(Y) = P(Y = 1) = p(Xt; k, j) = P(Xt j X0), (24)

 q(Y) = P(Y = 0) = q(Xt; k, j) = P(Xt j X0). (25)

Symbols Xt j X0 and Xt j X0 have the same meaning as in formula (14) and 
indicate the conformity, or lack thereof, between vectors Xt and X0.

As mentioned above, the most demanding conformity relationship is that of 
the (k; 0) class, the process being acceptable only if all partial requirements are 
met. If the process is binary and evaluated for k partial variables, then 2k possible 
sequences of the evaluated process can be distinguished, and the fraction of 
acceptable sequences of partial evaluations is 1/2k. As can be easily proven, this 
fraction will approach zero as the number k of partial evaluations increases. This 
means the likelihood of a negative evaluation of the analysed process will increase.

In addition, it may be observed that (Iwasiewicz 2011, p. 225):

 p(Y) = p(Xt; k, j) = .q X p X1 1 1– –– j
j

k

j
j

k

1 1
=

= =
^ ^h h6 @% %  (26)

This means that to calculate the aggregate defectiveness in the space of k diag-
nostic variables, the product of all partial correctnesses must be subtracted from 
one.

If the partial defectivenesses of each partial variables are identical and are 
p(X), then formula (26) is reduced to:
 p(Y) = p(Xt; k, j) = 1 – [1 – p(X)]k. (27)

From equation (27) the minimum number of criteria k can be determined, 
which guarantees the process under analysis will be disqualified. The class (k; 0) 
process shall be disqualified when the maximum allowable aggregate defective-
ness p0 is exceeded. This means the following condition must be met:
 1 – [1 – p(X)]k > p0. (28)

After the appropriate transformations, the following can be obtained:

 .lg
lg

k p X
p

1
1
–
–

> 0^
^
h
h6 @  (29)

Table 1 shows the example k values calculated for selected p0 and p(X). It was 
assumed for the calculations that p(X) = 0.01, (0.01), 0.06 and p0 = 0.05, (0.05), 0.5.

Rounding the resultant values k up to the nearest integer produces the minimum 
number of variables with which the evaluated process shall be disqualified. For 
example, the maximum allowable defectiveness p0 = 0.05 will be exceeded if the 
partial defectiveness is 0.01, and the number of variables k is 6 or more. 
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Table 1. The Minimum Number of Variables that Disqualifies a Process as a Function 
of Maximum Aggregate Defectiveness and Partial Defectiveness 

p(X)
(%)

p0

0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.45 0.50
k

0.01 5.10 10.48 16.17 22.20 28.62 35.49 50.83 59.48 68.97
0.02 2.54 5.22 8.04 11.05 14.24 17.65 25.29 29.59 34.31
0.03 1.68 3.46 5.34 7.33 9.44 11.71 16.77 19.63 22.76
0.04 1.26 2.58 3.98 5.47 7.05 8.74 12.51 14.64 16.98
0.05 1.00 2.05 3.17 4.35 5.61 6.95 9.96 11.66 13.51
0.06 0.83 1.70 2.63 3.61 4.65 5.76 8.26 9.66 11.20

Source: the author.

Equation (27) can also become the basis for determining the maximum average 
partial defectiveness at which a specific aggregate variability is not exceeded. 
By transforming this equation, we get:
 .p X p Y p X p Y p X p Y1 1 1 1 1 1– – – –– –k k k& &= = =^^ ^ ^ ^ ^hh h h h h6 @  (30)

If partial requirements are not critical, then the conformity relationship may be 
relaxed to (k; 1) class. The process will then be accepted if at least k – 1 of k partial 
requirements are met, and will be disqualified if at least two partial requirements 
are not met.

If we assume that all partial defectivenesses are at the same level p(X), and the 
conformity relationship is of (k; 1) class, then the aggregate defectiveness will be 
described by the formula:
 X ; , .p Y p k p X k p X p X1 1 1 1– – – –t

k k 1$ $= = +^ ^ ^ ^ ^h h h h h6 6@ @  (31)

The situation is somewhat different when the conformity relationship is 
reduced to a (k; 1r ) class, where r = 1, …, k, is the number of the variable relative 
to which no relation of conformity is required. This is equivalent to the reduction 
of the r-th partial criterion and the introduction of the (k – 1; 0) class relationship. 
The aggregate defectiveness will then be determined by the formula:

 X ; , .p Y p k r q X p X1 1 1 1– – –t j r
j

k

j r
j

k

1 1
≠≠= = =

= =
^ ^ ^ ^h h h h6 @% %  (32)

Let us now proceed to the definition of partial defectiveness for the j-th contin-
uous diagnostic variable. Then, using the previously defined symbols, we can save:
 .p X P X Xj j jz= +^ ^h h  (33)



Michał Major184

After defining partial defectivenesses using formula (26), the aggregate defec-
tiveness can be determined.

It is worth noting that according to measurement theory, the measurement scale 
and secondary dichotomisation of the diagnostic variable can be weakened. Then 
the defectiveness definition (33) should be replaced by definition (18), and the 
evaluated process becomes a binary process. 

6. Example of Aggregate Product Quality Assessment 

When evaluating the manufacture of towing ropes, the conformity of their 
parameters is checked against the requirements of (http://federacja-konsumentow.
org.pl/download/LINKI%202.doc, accessed: 22.08.2017):

1) The Road Traffic Law, Art. 31.1 pp. 7: features: tow length, rope colour,
2) requirements included in WT/008/PIMOT/93 (“Towing Ropes. Use safety 

requirements and tests”): features: user manual, tensile strength, ease of assembly/ 
disassembly.

Quantification of these features produces the following 5 diagnostic variables:
X1 – tow length in meters, evaluation by variables (continuous random vari-

able), tolerance range limited on both sides: Xj+ = [4m; 6m];
X2 – rope colour, evaluation by attributes, binary random variable: X2 = 0 if the 

rope has white/red or orange stripes over its entire length or has a red or yellow 
warning flag; X2 = 1 if the rope deviates significantly from the reference pattern 
with regard to the colour or flag;

X3 – user manual, evaluation by attributes, binary random variable: X3 = 0 if 
a manual is enclosed with each product that contains rope fixing and towing tech-
nique details; X3 = 1 if no manual is enclosed with the product, or the enclosed 
manual is incomplete with regard to rope fixing and towing technique details;

X4 – the rope’s tensile strength in 20 seconds (in daN/20s), evaluation by vari-
ables (continuous random variable), tolerance range limited on one side (the left 
side) by xj.d. Parameter xj.d is defined by separate regulations and depends on the 
weight of the vehicle being towed. If it does not exceed 1500 kg, then xj.d = 1200 
daN/20s. If it does, then xj.d. ≥ 1500 daN/20s;

X5 – ease of assembly/disassembly, evaluation by attributes, binary random 
variable: X5 = 0 if the rope is easy to assemble and disassemble after strength 
tests, the fasteners are not deformed; X5 = 1 if there are obstacles during the rope’s 
assembly/disassembly, it is locked, and fasteners are permanently deformed.

It should be noted that the set of 5 variables includes zero-one variables 
(X2, X3, X5) as well as variables measured on strong measuring scales (X1, X4). 
The process is therefore mixed, i.e. binary for variables: X2, X3, X5 and continuous 
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for variables X1 and X4. As noted in the article, variables X1, X4 can be transformed 
according to rule (18). Then the new variable X 01 =l  if ;x m m4 6t1 d6 @ and, accord-
ingly, X 11 =l  if ; .x m m4 6t1 z6 @  The values of variable X4 can also be similarly 
converted. Then X 04 =l  if x1t ≥ xj.d and X 14 =l  if x4t < xj.d. The resulting process 
will be binary in the space of 5 partial evaluations.

Let us assume further that, based on the technological process documentation, 
partial defectivenesses have been estimated. They are, respectively:
 p(X1) = 0.0002, p(X2) = 0.0004, p(X3) = 0.001, p(X4) = 0.0003, p(X5) = 0.0012.

With the assumed conformity class (5; 0), the aggregate defectiveness will be in 
accordance with formula (26): 
 p(Y) = 1 – (1 – 0.0002) · (1 – 0.0004) · (1 – 0.001) · (1 – 0.0003) · (1 – 0.0012) =  
 = 1 – (0.9998 · 0.9996 · 0.999 · 0.9997 · 0.9988) =  
 = 1 – 0.996903 = 0.003097 (0.3097% or 3.097‰).

This means that, on average, 31 out of 10,000 towing ropes have deviations 
from the adopted requirements.

Assume that the manufacturer’s ambition is to reduce the aggregate defective-
ness to 1 per mille. Can this be achieved by increasing the partial correctness with 
regard to criterion 3? If so, what should be the maximum partial defectiveness 
p(X3)?

To answer this question, the following inequality must be solved with respect 
to p(X3):
 p(Y) = 1 – {(1 – 0.0002) · (1 – 0.0004) · [1 – p(X3)] · (1 – 0.0003) · (1 – 0.0012)} ≤ 0.001 
 1 – {0.9998 · 0.9996 · [1 – p(X3)] · 0.9997 · 0.9988} ≤ 0.001 
 1 – {0.997901 · [1 – p(X3)]} ≤ 0.001 
 1 – 0.997901 + 0.997901 · p(X3) ≤ 0.001 
 0.002099 + 0.997901 · p(X3) ≤ 0.001 
 p(X3) = (0.001 – 0.002099) / 0.997901 = –0,0011 y [0, 1].

Since the resulting parameter p(X3) does not meet the basic assumption of the 
defectiveness definition, according to which it is a number from the [0, 1] range, it 
should be stated the aggregate defectiveness cannot be reduced to 1 per mille by 
decreasing the partial defectiveness criterion 3.

Let us note that even if we assume that p(X3) = 0, then the aggregate defective-
ness will be:
 p(Y) = 1 – {(1 – 0.0002) · (1 – 0.0004) · (1 – 0) · (1 – 0.0003) · (1 – 0.0012)} =  
 = 1 – (0.9998 · 0.9996 · 1 · 0.9997 · 0.9988) = 1 – 0.997901 = 0.002099 > 0.001.

This means that even if 100 percent of the requirements for the third feature 
(user manual) are fulfilled, and no improvement occurs in the partial correctnesses 
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with regard to the remaining criteria, ca. 21 out of 10,000 ropes may not meet the 
required specifications.

A solution may be to reduce other partial defectivenesses so that the aggregate 
defectiveness does not exceed the preset limit of 1 per mille.

Assuming that the target partial defectivenesses are equal p(X) = p(X1) = p(X2) = 
= p(X3) = p(X4) = p(X5), by using formula (27), the maximum acceptable average 
partial defectiveness can be determined:
 . . .p X 1 1 0 001 1 0 999 0 0002– – –5 5= = =^ h  (0.02% or 0.2‰).

The result demonstrates that in order to ensure that no more than one in ten 
thousand ropes deviates from the adopted reference pattern, the average partial 
defectiveness cannot exceed 0.2 per mille. However, this requires compliance with 
the difficult assumption that all partial defectivenesses are equal.

Another way to reduce the defectiveness is to ease the conformity class from 
(k = 5;0) to (k = 5;1) or (k = 5;2). However, this is not possible when the space of 
the number and type of criteria required are defined by law and not by individual 
contract with the recipient.

7. Closing Remarks

The resulting partial diagnostic variables Xj ( j = 1, …, k) and the synthetic 
variables Yt created in accordance with one of rules (14) or (15) can provide the 
basis for further process analysis based on a statistical process monitoring proce-
dure. The relevant literature (e.g. Montgomery 2009, Qiu 2013) reports several 
different procedures for this purpose. The best-known and most widespread tools 
are control charts. The primary feature of all tools identified as control charts is 
that they serve to record, process, and analyse the source data describing the state 
of the process. The aim of such an analysis is to detect systematic (non-random) 
changes in the process, which results in the emission of a corresponding process 
state signal. Since in the aricle it was assumed that in subsequent moments of the 
process’ tracking t (t = 1, 2, 3, …) individual elements of the process are evalu-
ated as represented by individual values of the synthetic variable Yt in the form of 
(14) or (15), it would seem most rational to use a sequential procedure11 and, in 

11 These procedures are based on the sequential verification of statistical hypotheses, which is 
an alternative to the classical theory of hypothesis verification. Their design was derived from the 
works of Abraham Wald (1902–1950) (Wald 1945, 1947).
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particular, of cumulative sum control charts with the process acceptance12. This 
chart can be used in either a graphical or numerical version.

Sequential analysis theory is reduced to the random sampling of individual 
elements or small sets of the general population, in each case resolving whether 
the information so far acquired allows for a specific decision. Such a decision may 
result in the acceptance or disqualification of the process being evaluated. A third 
option is also available, whereby the decision is postponed until the information 
resource extended by yet another unit will allow for an alternative choice. Such 
decisions are made with two specific risks of error: Type I (α) and Type II (β). 
The hypotheses to be tested are in the following form (Iwasiewicz 2011, p. 233; 
Iwasiewicz, Paszek & Steczkowski 1988, p. 101; Wald 1945, p. 158):
 H0: p(Y) = p0(Y), (34)

 H1: p(Y) = p1(Y), (35)

while p0(Y) < p1(Y).
Parameters p0(Y) and p1(Y) denote, respectively, the maximum allowable and 

the minimum disqualifying aggregate defectivenesses. Range [p0(Y); p1(Y)] with 
length p1(Y) – p0(Y) = Δp is referred to as the interval of uncertain decisions, in 
which the information obtained does not allow convincing acceptance of either 
hypothesis, H0 or H1. Hypothesis H0 is adopted at a risk of error no greater than β, 
while hypothesis H1 is adopted at a risk no higher than α.

A description of the use of the cumulative sum control chart with the possi-
bility of accepting the process for monitoring binary processes can be found in 
(Iwasiewicz 2008–2009, 2011, Major 2017).

The procedures described in this article are among the issues related to product 
quality evaluation and the related analysis of stochastic processes. These processes 
may be related to problems arising in the production of usable products. They can 
also be applied in the analysis of other processes such as stock exchange processes, 
service processes, teaching and learning processes, etc.

In all these cases, there are two possible means of evaluating a process: by 
attributes and by variables. As a rule, this evaluation is a multi-criterion evaluation, 
where the need appears for the aggregation of particle data in the form of synthetic 
measures. A separate issue is whether the aggregation should be binary or numeric. 
After considering the many benefits and drawbacks, it can be concluded that in 
the age of digitisation, which in its foundations is based on a zero-one system, 
binarisation of processes is the most appropriate course of action.

12 See: (Major 1997, p. 47–54; Iwasiewicz 2008–2009, 2011; Major 2015a, p. 25–43; 2015b, 
p. 223–238; 2016, p. 47–60; 2017, p. 87–105).
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Binaryzacja i monitorowanie procesów stochastycznych w zarządzaniu 
jakością 
(Streszczenie)

Celem artykułu jest prezentacja problemów, z jakimi można się spotkać podczas 
monitorowania i oceny procesów sterowania jakością. W procedurach sterowania jako-
ścią wyróżnia się dwa rodzaje oceny właściwości produktów (procesów): alternatywną 
ocenę właściwości i liczbową ocenę właściwości. Z tego podziału wynika również podział 
procesów. Ogólnie istnieją dwa rodzaje procesów stochastycznych: procesy binarne 
i procesy ciągłe (liczbowe). Pierwsze z nich sprowadzają opisywaną rzeczywistość do 
systemu zero-jedynkowego, drugie zaś do analizy procesów wykorzystują zmienne losowe 
ciągłe. 

W artykule poruszono między innymi następujące problemy: ocena wielowymiaro-
wych procesów stochastycznych, sposoby binaryzacji procesów, pomiar jakości produk-
tów (procesów), zastosowanie statystycznych procedur do monitorowania procesów. 
W opracowaniu zamieszczono także obszerny przykład numeryczny ilustrujący omawiane 
problemy.

Słowa kluczowe: procesy binarne, zarządzanie jakością, sterowanie procesem, ocena 
wielowymiarowych procesów stochastycznych.


