New Requirements for the Quality of Water Supply Services to Curb Water Loss

Authors

DOI:

https://doi.org/10.15678/ZNUEK.2021.0994.0403

Keywords:

water supply systems, the Drinking Water Directive, water loss, water leakage

Abstract

Objective: Directive 2020 / 2184 on the quality of drinking water and the European Green Deal introduce new requirements for assessing the quality of water services and the need to reduce water leakage. The main purpose of the article is to compare the methods of determining water losses used in Poland with international standards and to determine the readiness of Polish water supply systems to implement mandatory leakage estimation standards.

Research Design & Methods: The article presents a review of the literature on water loss assessment methods in Poland and abroad. Data on water losses in 11 water supply systems were presented, based on the information from the Central Statistical Office and the literature. Based on the data, a comparative analysis of selected entities was carried out.

Findings: With a ranking of water utilities created, the impact of input data and the adopted calculation methodology on the position of a given entity in the ranking were analysed. The assumptions made for the calculation of the indicators and the choice of the evaluation method are shown to be important in the assessment of the entities.

Implications / Recommendations: Comparing the scope of data collected at the national level and the requirements for international standards, it can be concluded that in Poland these data are not sufficient to calculate the value of the ILI (Infrastructure Leakage Index). The ILI is known in Poland, but its application is limited to the local level. The introduction of new requirements for the calculation of ILI at the national level will require the implementation of methods for collecting large amounts of data from many water utilities.

Contribution: Due to the important role water utilities play, the level of infrastructure maintenance in supply systems must be constantly controlled. One of the basic indicators for assessing the condition of the water supply network is water loss. The conclusion from the article can be used by water operators to better evaluate their systems. The results of the analysis indicate the need for further research and the development of new methods of assessing water supply systems. The research contributes to the development of several scientific disciplines: environmental engineering, mining and energy management and quality studies.

Downloads

Download data is not yet available.

References

Banovec P., Domadenik P. (2018), Defining Economic Level of Losses in Shadow: Identification of Parameters and Optimization Framework, „Proceedings”, vol. 2(11), https://doi.org/10.3390/proceedings2110599.

Benchmarking IGWP (2021), https://igwp.org.pl/index.php/nasza-aktywnosc/analizy-ekonometryczne/1761-raport-benchmarking-wybrane-wyniki-przedsiebiorstw-wodociagowo-kanalizacyjnych-w-polsce-za-lata-2014-2018-juz-dostepny (data dostępu: 13.07.2021).

Drinking Water Supply and Leakage Management (2021), EurEau, Briefing Note, https://www.eureau.org/resources/briefing-notes/5735-eureau-briefing-note-on-drinking-water-supply-and-leakage-management/file (data dostępu: 13.07.2021).

Dyrektywa Parlamentu Europejskiego i Rady (UE) 2020/2184 z dnia 16 grudnia 2020 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi (Dz. Urz. UE z 23.12.2020 r., L 435/1).

EU Reference Document Good Practices on Leakage Management WFD CIS WG PoM (2015), Main Report, European Commission, https://doi.org/10.2779/102151.

Ferrandez-Gamot L., Busson P., Blesa J., Tornil-Sin S., Puig V., Duviella E, Soldevila A. (2015), Leak Localization in Water Distribution Networks Using Pressure Residuals and Classifiers, „IFAC-PapersOnLine”, vol. 48, nr 21, https://doi.org/10.1016/j.ifacol.2015.09.531.

Garbowski A. (2017), Analiza bilansu wody w przedsiębiorstwie „Wodociągi Słupsk” Sp. z o.o. – ważne jest, gdzie mierzymy, czym mierzymy i jak interpretujemy wyniki, http://www.wodociagi.slupsk.pl/wp-content/uploads/2017/11/Analiza_bilansu_wody.pdf (data dostępu: 13.07.2021).

Gupta A., Bokde N., Kulat K.D. (2018), Hybrid Leakage Management for Water Network Using PSF Algorithm and Soft Computing Techniques, „Water Resources Management”, vol. 32, nr 3, https://doi.org/10.1007/s11269-017-1859-3.

Gupta A.D., Bokde N., Marathe D., Kulat K. (2017), Optimization Techniques for Leakage Management in Urban Water Distribution Networks, „Water Supply”, vol. 17(6), https://doi.org/10.2166/ws.2017.064.

Hajibandeh E., Nazif S. (2018), Pressure Zoning Approach for Leak Detection in Water Distribution Systems Based on a Multi Objective Ant Colony Optimization, „Water Resources Management”, vol. 32, https://doi.org/10.1007/s11269-018-1929-1.

Klosok-Bazan I., Boguniewicz-Zablocka J., Suda A., Łukasiewicz E., Anders D. (2021), Assessment of Leakage Management in Small Water Supplies Using Performance Indicators, „Environmental Science and Pollution Research”, vol. 28, nr 30, https://doi.org/10.1007/s11356-021-13575-5.

Kwietniewski M. (2013), Zastosowanie wskaźników strat wody do oceny efektywności jej dystrybucji w systemach wodociągowych, „Ochrona Środowiska”, vol. 35, nr 4.

Lambert A., Charalambous B., Fantozzi M., Kovac J., Rizzo A., Galea St John S. (2014), 14 Years’ Experience of Using IWA Best Practice Water Balance and Water Loss Performance Indicators in Europe, IWA Publishing, London.

Lenzi C., Bragalli C., Bolognesi A., Fortini M. (2014), Infrastructure Leakage Index Assessment in Large Water Systems, „Procedia Engineering”, vol. 70, https://doi.org/10.1016/j.proeng.2014.02.113.

M-06 (2021), Sprawozdanie o wodociągach, kanalizacji i wywozie nieczystości ciekłych gromadzonych w zbiornikach bezodpływowych, http://form.stat.gov.pl/formularze/2018/passive/M-06.pdf (data dostępu: 13.07.2021).

Moslehi I., Jalili-Ghazizadeh M., Yousefi-Khoshqalb E. (2021), Developing a Framework for Leakage Target Setting in Water Distribution Networks from an Economic Perspective, „Structure and Infrastructure Engineering”, vol. 17(6), https://doi.org/10.1080/15732479.2020.1777568.

Munoz-Trochez C., Smout I.K., Kayaga S. (2011), Economic Level of Leakage (ELL) Calculation with Limited Data: An Application in Zaragoza (w:) The Future of Water, Sanitation and Hygiene in Low-income Countries – Innovation, Adaptation and Engagement in a Changing World: Proceedings of the 35th WEDC International Conference, Loughborough, UK, 6–8 July 2011, red. R.J. Shaw, WEDC, Loughborough University, https://hdl.handle.net/2134/30105 (data dostępu: 13.07.2021).

Musz-Pomorska A., Iwanek M., Suchorab P., Brodaczewska A. (2016), Analiza strat wody na przykładzie wybranego wodociągu grupowego, „Czasopismo Inżynierii Lądowej, Środowiska i Architektury”, t. 33, z. 63, nr 2, https://doi.org/10.7862/rb.2016.120.

Ociepa E., Kędzia W. (2015), Analiza strat wody w wybranych wodociągach województwa śląskiego, „Inżynieria i Ochrona Środowiska”, t. 18, nr 3.

Piechurski F. (2014), Działania zmierzające do ograniczania strat wody w systemach jej dystrybucji, „Napędy i Sterowanie”, r. 16, nr 1.

Rak J., Misztal A. (2017), Analiza strat wody w wodociągu miasta Jarosław, „Czasopismo Inżynierii Lądowej, Środowiska i Architektury”, t. 34, z. 64, nr 4, https://doi.org/10.7862/rb.2017.198.

Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2020/852 z dnia 18 czerwca 2020 r. w sprawie ustanowienia ram ułatwiających zrównoważone inwestycje, zmieniające rozporządzenie (UE) 2019/2088 (Dz. Urz. UE z 22.06.2020 r., L 198/13).

Seago C.J., Mckenzie R.S., Liemberger R. (2005), International Benchmarking of Leakage from Water Reticulation Systems, https://www.miya-water.com/fotos/artigos/06_international_benchmarking_of_leakage_from_water_reticulation_systems_1017893235a-325e2b03b5c.pdf (data dostępu: 13.07.2021).

Słownik pojęć GUS (2021), https://stat.gov.pl/metainformacje/slownik-pojec/pojecia-stosowane-w-statystyce-publicznej/496,pojecie.html (data dostępu: 13.07.2021).

Studziński A., Pietrucha-Urbanik K., Mędrala A. (2014), Analiza strat wody oraz awaryjności w wybranych systemach zaopatrzenia w wodę, „Czasopismo Inżynierii Lądowej, Środowiska i Architektury”, t. 31, z. 61, nr 4, http://doi.prz.edu.pl/pl/pdf/biis/163.

Vrachimis S.G., Eliades D.G., Polycarpou M.M. (2018), Leak Detection in Water Distribution Systems Using Hydraulic Interval State Estimation, IEEE Conference on Control Technology and Applications (CCTA), https://doi.org/10.1109/CCTA.2018.8511516.

Vrachimis S.G., Kyriakou M.S., Eliades D.G., Polycarpou M.M. (2018), A Benchmark Dataset for Leakage Diagnosis in Water Distribution Networks, „International WDSA/CCWI 2018 Joint Conference”, vol. 1.

Yu J., Zhang L., Chen J., Xiao Y., Hou D., Huang P., Zhang G., Zhang H. (2021), An Integrated Bottom-Up Approach for Leak Detection in Water Distribution Networks Based on Assessing Parameters of Water Balance Model, „Water”, vol. 13(6), https://doi.org/10.3390/w13060867.

Published

2022-01-13

Issue

Section

Articles